PREV UP NEXT Using and Porting GNU CC

5.22: Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help the compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. Four attributes, noreturn, const, format, and section are currently defined for functions. Other attributes, including section are supported for variables declarations (see Variable Attributes).

noreturn
A few standard library functions, such as abort and exit, cannot return. GNU CC knows this automatically. Some programs define their own functions that never return. You can declare them noreturn to tell the compiler this fact. For example,
void fatal () __attribute__ ((noreturn));

void
fatal (...)
{
  ... /* Print error message. */ ...
  exit (1);
}

The noreturn keyword tells the compiler to assume that fatal cannot return. It can then optimize without regard to what would happen if fatal ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables.

Do not assume that registers saved by the calling function are restored before calling the noreturn function.

It does not make sense for a noreturn function to have a return type other than void.

The attribute noreturn is not implemented in GNU C versions earlier than 2.5. An alternative way to declare that a function does not return, which works in the current version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;
const
Many functions do not examine any values except their arguments, and have no effects except the return value. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute const. For example,
int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer times than the program says.

The attribute const is not implemented in GNU C versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

Note that a function that has pointer arguments and examines the data pointed to must not be declared const. Likewise, a function that calls a non-const function usually must not be const. It does not make sense for a const function to return void.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf or scanf style arguments which should be type-checked against a format string. For example, the declaration:
extern int
my_printf (void *my_object, const char *my_format, ...)
      __attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should be either printf or scanf. The parameter string-index specifies which argument is the format string argument (starting from 1), while first-to-check is the number of the first argument to check against the format string. For functions where the arguments are not available to be checked (such as vprintf), specify the third parameter as zero. In this case the compiler only checks the format string for consistency.

In the example above, the format string (my_format) is the second argument of the function my_print, and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format strings as arguments, so that GNU CC can check the calls to these functions for errors. The compiler always checks formats for the ANSI library functions printf, fprintf, sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and vsprintf whenever such warnings are requested (using `-Wformat'), so there is no need to modify the header file `stdio.h'.

section ("section-name")
Normally, the compiler places the code it generates in the text section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. The section attribute specifies that a function lives in a particular section. For example, the declaration:
extern void foobar (void) __attribute__ ((section (".init")));

puts the function foobar in the .init section.

Some file formats do not support arbitrary sections so the section attribute is not available on all platforms. If you need to map the entire contents of a module to a particular section, consider using the facilities of the linker instead.

You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration.

Some people object to the __attribute__ feature, suggesting that ANSI C's #pragma should be used instead. There are two reasons for not doing this.

  1. It is impossible to generate #pragma commands from a macro.
  2. There is no telling what the same #pragma might mean in another compiler.

These two reasons apply to almost any application that might be proposed for #pragma. It is basically a mistake to use #pragma for anything.