The main goal of GNU CC was to make a good, fast compiler for machines in the class that the GNU system aims to run on: 32-bit machines that address 8-bit bytes and have several general registers. Elegance, theoretical power and simplicity are only secondary.
GNU CC gets most of the information about the target machine from a machine description which gives an algebraic formula for each of the machine's instructions. This is a very clean way to describe the target. But when the compiler needs information that is difficult to express in this fashion, I have not hesitated to define an ad-hoc parameter to the machine description. The purpose of portability is to reduce the total work needed on the compiler; it was not of interest for its own sake.
GNU CC does not contain machine dependent code, but it does contain code
that depends on machine parameters such as endianness (whether the most
significant byte has the highest or lowest address of the bytes in a word)
and the availability of autoincrement addressing. In the RTL-generation
pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different
combinations of parameters. Often I have not tried to address all possible
cases, but only the common ones or only the ones that I have encountered.
As a result, a new target may require additional strategies. You will know
if this happens because the compiler will call abort
. Fortunately,
the new strategies can be added in a machine-independent fashion, and will
affect only the target machines that need them.